

Electroactive polymers (EAP) as Emerging Technology for Devices and Robotics

Review, Capabilities, Applications and Potential

Yoseph Bar-Cohen

NDEAA, Jet Propulsion Lab, Caltech., Pasadena, CA, yosi@jpl.nasa.gov http://ndeaa.jpl.nasa.gov/

Acknowledgement

The research at Jet Propulsion Laboratory (JPL), California Institute of Technology, was carried out under a contract with National Aeronautics Space Agency (NASA).

Outline

- Background
- What are the alternative
- Robotics and EAP
- Longitudinal and bending EAP
- Current planetary applications
- Emerging technologies to support the EAP infrastructure
- Future development and applications

What is an Electroactive Polymer (EAP)

- EAP materials are polymers that exhibit change in a property or a material/physical characteristic as a result of an electrical stimulation (field, current, etc.).
- Changes can involve physical deformation, optical or magnetic variation and others.
- The emphasis of this course is on EAP materials that display electromechanical reaction.
 - The majority of the course material will focus on actuation capabilities.
 - Sensing will be discussed mostly in relation to IPMC materials.

Background

- Electroactive polymers (EAP) are emerging with behavior that mimic biological muscles.
- These materials can be used to produce actuators that are miniature, light, inexpensive, miser and best of all large displacement inducers.
- Tests have shown that certain EAP materials operate effectively also at cryogenic temperatures and vacuum.
- The technology enables unique actuation to support various mechanisms, robotics and locomotion needs.

Comparison between EAP and widely used transducing actuators

Property	EAP	EAC	SMA
Actuation strain	>10%	0.1 - 0.3 %	<8% short fatigue life
Force (MPa)	0.1 - 3	30-40	about 700
Reaction speed	μsec to sec	µsec to sec	sec to min
Density	1- 2.5 g/cc	6-8 g/cc	5 - 6 g/cc
Drive voltage	1-7V/ 10-100V/μm	50 - 800 V	NA
Consumed Power*	m-watts	watts	watts
Fracture toughness	resilient, elastic	fragile	elastic

^{*} Note: Power values are compared for documented devices driven by such actuators.

Historical perspective

- The pioneering of the EAP field can be attributed to Eguchi's 1925 reported discovery of an electret material*.
 - Obtained when carnauba wax, rosin and beeswax are solidified by cooling while subjected to DC bias field.
- Another important milestone is the 1969 observation of a substantial piezoelectric activity in PVF2.
 - PVF2 films were applied as sensors, miniature actuators and speakers.
- Since the early 70's the list of new EAP materials has grown considerably, and the most progress was made in this decade.
 - This EAPAD conference of SPIE, initiated by its Chair, is the first conference on this subject.
- Even though many EAP were already introduced, the number of commercially used ones was mostly limited to PVF2/TRFE materials and ceramic/polymer composites.

^{*} Electrets are dielectric materials that can store charges for long times and produce field variation in reaction to pressure.

The evolution of EAP

- The large-displacement actuation combined with other attractive characteristics (light, resilient, consume low-power, long fatigue life, low cost and rapid respond) offer incentives to pursue their application.
- Some of the leading emerging EAP materials are:
 - Electro-Statically Stricted Polymers (ESSP) exhibiting several tens of percents actuation strain.
 - Ionic-gel demonstrating over 50% contraction.
 - Ion-exchange Polymer membrane Metal Composites (IPMC) bending to closed loop.
- Even though some of these materials offer actuation displacement capabilities that are similar or exceed the performance of biological muscles, their force actuation is relatively small.

BIOLOGICALLY INSPIRED ROBOTICS

MULTI-TASKING IN-SITU MISSIONS USING SCALABLE AUTONOMOUS ROBOTS FOR COLONIZED PLANETARY EXPLORATION

Multiple locomotion capabilities

Flying, walking, swimming & diving

Hopping, flying, crawling & digging

Coordinated robotics

Examples from
nature offer ideas
for scalable
autonomous robots
that can be used to
colonize planets
and perform
multi-tasking insitu exploration
missions

Potential EAP applications for robotics

- EAPs offers unique characteristics to produce highly maneuverable, noiseless, agile biomimetic miniature robots.
- EAP actuators can be used to produce mechanisms with simple drive signals but the nonlinear behavior needs to be taken into account.
- Such materials can be used to provide the necessary locomotion drive mechanism of insect-like (flying, crawling, swimming, etc.) robots at sizes that range from microns to several centimeters.
- The development and application of EAP materials and mechanisms involves interdisciplinary expertise in chemistry, materials science, electronics, mechanisms, computer science and others.

Elements of an EAP actuated system

EAP infrastructure

Technology status

- Bending and longitudinal EAP actuators are developed by numerous research institutes, academia and industry.
- Various unique capabilities and applications are investigated.
- EAP changed the paradigm about robotics construction polymer materials can serve simultaneously as a structural element, actuator and end-effector.
 - Conventional robots are driven by mechanisms that consist of motors, gears, bearings, etc.
 - Electroactive polymers (EAP) offer alternative simple and direct actuation with resilience and toughness emulating biological muscles.
- The potential for space, medical, commercial, military and other applications are great but the main limiting factor is their low force actuation capability.

JPL

Bending and longitudinal EAP examples

Ion-exchange Polymer membrane Metallic Composite (IPMC) can bend by over 90° under ~3-4V and ~30-50-mW.

31-mm wide, 50-µm thick Electrostatically stricted polymer (ESSP) film extending over 12%

EAP mechanisms developed at JPL

Dust wiper

A bending EAP is being developed as a dust wiper for application considerations in the MUSES-CN mission

Miniature robotic arm

A stretching EAP is used to lower a robotic arm, while bending EAP fingers operate as a gripper. The technology is being developed to enable miniature sample handling robotics.

Discover Magazine, Aug. 98, p.33

Longitudinal EAP Actuators Electro-Statically Stricted Polymer (ESSP)

- Polymers with low elastic stiffness and high dielectric constant can be used to induce large actuation strain by subjecting them to an electrostatic field.
- Coulomb forces between electrodes can squeeze or stretch a sandwiched polymer material.
- Longitudinal electrostatic actuator can be made of a dielectric elastomer film (silicone) coated with carbon powder electrodes.
 - The force (stress) that is exerted on such a film with compliant electrodes is:

$$P = \varepsilon \varepsilon_0 E^2 = \varepsilon \varepsilon_0 (V / t)^2 \tag{1}$$

Where: P is the normal stress, ε_0 is the permittivity of vacuum and ε is the relative permittivity (dielectric constant) of the material, E is the electric field across the thickness of the film, V is the voltage applied across the film and t is the thickness of the film. The Poisson's ratio is assumed as 0.5.

Longitudinal eap actuator Electro-Statically Stricted Polymer (ESSP)

Under electro-activation, a polymer film with electrodes on both surfaces expands laterally.

EAP film subjected to 25 V/μm induced over12% extension

Robotic arm

A computer controlled arm with longitudinal EAP actuator serving as the lifter and bending EAP fingers as the gripper

Bending EAP actuator/sensor Capabilities

- IPMC induces large bending actuation strain
- It also induce the reverse phenomena, i.e., sensing bending strain
- Effective at low temperatures (-100°C) and vacuum (1-torr)
- Unique electrical resistance that grows with the decrease in temperature
- Capacitive behavior that is employed for power storage

Limitations

- Requires coating to prevent loss of the ionic content when operating in air
- Coating process involves wrinkling, blistering, off-axis bending and nonlinear deformation
- Transverse deformation constrains the response
- Low actuation force
- Slow response to turn-off, retraction under DC-voltage and degrades by electrolysis at >2V
- Complex equivalent circuit characteristics

EAP actuated dust wiper

- Flight-like EAP dust wiper is being prepared at JPL using specifications of the MUSES-CN mission
- LaRC developed a unique protective coating
- ESLI developed effective wiper blades
- Osaka National Research Institute, Japan, is providing effective bending EAP
- Kobe University, Japan, is providing electromechanical modeling assistance
- VT is developing a self-assembled mono-layering technique for improved electroding

Graphite/Epoxy wiper blade* with fiberglass brush coated with gold

* Made by Energy Science Laboratories, Inc., San Diego, California

Planetary technical challenges

NanoRover

- Mars exploration requires removal of dust as small as 3.2µm diameter.
- Operation on an asteroid (MUSES-CN mission) requires addressing the effect of ionic radiation, UV and a large temperature range.
 - Overall the temperature range is: -155°C to +125°C and the desired operating range is -125°C to +60°C

Challenges and solutions to the application of IPMC as bending actuators

Challenge	Solution		
Fluorinate base - difficult to bond	Pre-etching (LaRC)		
Sensitive to dehydration (~5-min)	Etching and coating (NASA-LaRC)		
Electroding points cause leakage	Effective compact electroding method was developed		
Off-axis bending actuation	Use of load (e.g., wiper) to constrain the free end		
Most bending occurs near the poles	Improve the metal layer uniformity		
Electrolysis occurs at >1.03-V in	Minimize voltage		
Na+/Pt	• Use IPMC with gold electrodes and cations based on		
	- Li ⁺		
	- Perfluorocarboxylate with tetra-n-butylammonium		
	(ONRI)		
• Survive -155°C to +125°C	IPMC was demonstrated to operate at -140°C		
• Operate at -125°C to +60°C			
Need to remove a spectrum of dust	• Use effective wiper-blade design (ESLI, San Diego, CA)		
sizes in the range of $>3\mu m$	Apply high bias voltage to repel the dust		
Reverse bending under DC voltage	Limit application to dynamic/controlled operations		
Developed coating is permeable	Alternative polymeric coating		
	Metallic Self-Assembled Monolayer overcoat		
Residual deformation	Still a challenge		
No established quality assurance	Use short beam/film		
	Efforts are underway to tackle the critical issues		

FEM Computational chemistry of EAP

- The improvement of the induced force capability of EAP is critical to making these materials the actuators of choice.
- Recent work at the NASA LaRC's Computational Materials Program used accurate quantum chemistry calculations to determine force fields for a range of polymers including polyimides.
- The calculated force field was experimentally verified (through thermophysical and ultrasonic measurements).
 - The method was used to predict response to electric fields, mechanical stresses, and temperature.
- Planes of large spheres represent the metal electrodes, and are used to simulate the poling field. The properties from atomistic simulations are fed into large-scale finite-element models.
- So far, successful models at the atomistic, micro-mechanical, and continuum levels have been developed.

Significant future applications

Mechanisms & Robotics

Muscle actuators that are resilient and damage tolerant will enable:

- Walking, crawling, swimming and/or flying miniature robots
- Insect-like robotic colonies that emulate ants.

Miniaturization

MEMS using EAP actuators and sensors.

Planetary applications

Recent JPL results, showing that bending-EAP are operating at low-temperatures and vacuum, have a great promise for space applications such as:

- EAP surface wiper for dust removal from optical/IR windows
- Miniature robotic arm for sample manipulation
- Under consideration: Support active/controllable inflatable structures

Transition to broad range of applications

Beneficiaries include: medicine, consumer products and military.

Summary

- Electroactive polymers (EAP) are emerging with capabilities that mimic biological muscles.
 - Inducing large displacements and can be made miniature, low mass, inexpensive, and consume low power.
- The technology enables unique actuation for various mechanisms, robotics and locomotion capabilities.
- The infrastructure of the field needs to be enhance and international collaboration among the developers and users is expected to lead to great improvement in the coming years.
 - Issues associated with their low force actuation capability and non-linear behavior requires attention.
 - Effective sensors are needed to track the large displacement as well as provide position information.
 - The resilience of the material and flexibility of the material poses control problems

The grand challenge for EAP as ARTIFICIAL MUSCLES

